DorisDB在跨越速运查询引擎中的探索

跨越速运集团有限公司创建于年,目前服务网点超过家,覆盖城市余个,是中国物流服务行业独角兽企业。跨越集团大数据中心负责全集团所有数据平台组件的建设和维护,支撑20余条核心业务线,面向集团5万多员工的使用。目前,大数据中心已建设数据查询接口1W+,每天调用次数超过1千万,TP99在1秒以下。我们利用DorisDB作为通用查询引擎,有效解决了原架构大量查询返回时间过长,性能达不到预期的问题。

“作者:张杰

跨越集团大数据运维架构师,负责集团公司大数据平台的维护和建设”

业务背景

总体架构

我们原始离线数仓的总体架构如下图所示,数据从各个业务线的数据库,比如MySQL等,通过数据集成工具汇聚到ETL集群(即Hadoop集群),再使用Hive、Spark、Presto等批量处理引擎进行数据仓库的分层处理,然后将DW层和ADS层的数据推送到各种不同的查询引擎。

在这些查询引擎之上,有个统一的查询API网关,应用层的自助分析工具或ERP系统前端通过调用这个API网关,将数据内容呈现给用户。

业务痛点

该系统最大的痛点是查询性能问题。公司对大数据查询接口的响应延迟是有考核的,期望99%的查询请求都能在1秒内返回,比如页面ERP系统、手机端各类报表APP,用户会随时查看数据并进行生产环节调整,过慢的查询响应会影响用户体验,甚至影响业务生产。针对复杂的SQL查询场景,之前采用的Presto、Impala+Kudu、ClickHouse等系统,是远远达不到预期的。另外,针对各种复杂的数据分析业务场景,引入很多不同组件,导致了维护和使用成本非常高。

因此,我们急需一个新的查询引擎,能统一查询引擎,解决性能查询问题,降低使用和维护成本。

OLAP引擎选型

第一阶段,在年,跨越集团大数据中心使用Presto作为通用的查询引擎。此阶段集团大数据中心数仓层基本用的是Hive,Presto可以直连Hive的特性让我们无需做过多的改造,就可以直接生成查询的API。从性能角度考虑,我们也会将数仓中的部分数据拷贝至独立的Presto集群,和数仓ETL集群进行资源隔离。这套架构运行一年多之后,随着业务需求越来越复杂,数据量越来越大,该基于Presto构建的集群性能急剧下降。

第二阶段,为解决Presto集群性能不足的缺陷,我们基于ClickHouse开始构建新的通用查询引擎。年我们使用ClickHouse构建了大量大宽表,将此前需要多层关联的查询逐步迁移到ClickHouse集群。通过这种方式,我们确实解决了此前面临的性能问题。但与此同时,我们需要建设越来越多的大宽表,操作繁琐运维困难。并且这种数据模型无法随业务需求变化而快速改变,灵活性差。

第三阶段,我们在年开始寻找其他能满足我们需求的OLAP引擎,此时我们发现了DorisDB这个产品。首先


转载请注明:http://www.aierlanlan.com/rzgz/5694.html

  • 上一篇文章:
  •   
  • 下一篇文章: